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One of the classical problems in potential theory is to specify a closed surface Γ for a prescribed electric
charge density µ in such a way that the uniform distribution of electric charges on Γ produces the
same potential as µ (at least in a neighborhood of the infinity). Mathematically, this problem can be
formulated as follows: given a measure µ, find a surface Γ = ∂Ω such that

(1)
∫

h dµ =
∫

∂Ω
h dHN−1

holds for all harmonic functions h defined in a neighborhood of Ω, where HN−1 denotes the (N − 1)-
dimensional Hausdorff measure. We call such a surface ∂Ω a quadrature surface of µ. The mean value
property of harmonic functions implies that (1) is valid when µ = ωNδ0 and Ω = B(0, 1), where ωN is
the area of the unit sphere ∂B(0, 1) in RN and δ0 is the Dirac measure supported at the origin. Thus,
the identity (1) can be seen as a generalization of the mean value formula for harmonic functions.

Another equivalent formulation of the problem is the following overdetermined problem:

(2)


−∆u = µ in Ω,

u = 0 on ∂Ω,
∂u

∂n
= −1 on ∂Ω,

where n is the outward unit normal vector to ∂Ω. Namely, the boundary value problem (2) possessess
a solution u in Ω if and only if the boundary ∂Ω satisfies the identity (1). From this point of view, the
uniqueness of a quadrature surface ∂Ω holds in the case where µ = ωNδ0 by a symmetry argument
known as the method of moving planes or a simpler argument [6] based on careful observation of the
profile of a radially symmetric solution u = urad (the latter can also be applied to a heterogeneous
situation and the main result below also holds for a weighted mean value formula).

The existence of a quadrature surface Γ of a prescribed µ has been investigated by several authors
with different approaches (see [2], [1], [4] and [3]). In particular, a variational method was successfully
applied to obtain a general existence result. However, as a counterexample by Henrot [4] shows, the
uniqueness of a quadrature surface cannot hold for general µ, unlike the case µ = ωNδ0.

Our main purpose here is to establish the uniqueness of Ω for some restricted class of measures µ.
Namely, we prove that, if µ is sufficiently close to the Dirac measure ωNδ0, then there exists a unique
smooth domain admitting (1). Moreover, we derive a quantitative estimate for the deviation of the
domain from a ball, which exhibits the stronger rigidity of the domain of the mean value formula for
perturbations of the Dirac measure of higher-order symmetry.

To state our main result, let us define the class Mk of positive measures by

Mk :=

{
ν

∣∣∣∣∣ ‖ν‖M = ω,

∫
h dν = 0 for all h ∈

k∪
j=1

Hj

}
,

where ‖ν‖M :=
∫

dν and Hj denotes the vector space of all real-valued homogeneous harmonic
polynomials of degree j ∈ N on RN . The total variation norm of a signed measure ν is defined by

‖ν‖M := ‖ν+‖M + ‖ν−‖M,
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where ν = ν+−ν− is the Jordan decomposition. We also introduce a quantitative way of describing the
“distance” between a surface ∂Ω and SN−1. Let Cd(SN−1) denote the space of all d-times continuously
differentiable functions ρ on SN−1 and let Ωρ be the star-shaped domain defined by

Ωρ :=
{(

1 + ρ

(
x

|x|

))
x

∣∣∣∣ x ∈ B \ {0}
}
∪ {0}

for ρ ∈ Cd(SN−1) satisfying ρ(ζ) > −1. Then, the norm ‖ρ‖Cd(SN−1) represents how much ∂Ωρ deviates
from SN−1 in the radial direction up to d-th derivatives.

Theorem 1. There is η0 > 0 such that, for any µ with ‖µ − ωδ0‖M + (diam supp µ)N−1 < η0,

(A) there exists a unique smooth domain Ω satisfying suppµ ⊂ Ω and (1); and

(B) if µ ∈ Mk for k ∈ N ∪ {0}, then for any ε > 0 and d ∈ N

(3) ‖ρ‖Cd(SN−1) ≤ C
(
‖µ − ωδ0‖M + (diam supp µ)N−1

)1+ k+1
N−1

−ε

holds, where Ω = Ωρ and C = C(ε, k, d) > 0.

Remark 2. The uniqueness holds among all domains Ω satisfying the regularity assumption that ∂Ω
is of class C1 and satisfies the interior sphere condition, i.e., for each point x ∈ ∂Ω there is a ball
B ⊂ Ω such that x ∈ ∂B.

Let us briefly explain the main idea of the proof. The first step is to construct a “nice” domain Ω∗
satisfying (1) and (3). For this purpose, we derive a deformation flow which describes how the domain
Ω deforms when the measure µ varies in a smooth manner. The solvability of the flow, which was
proved by the author [5] through the investigation of the spectral properties of the linearized operator,
enables us to construct Ω∗ having the desired properties. Moreover, the dynamical structure of the
flow will be clarified by explicitly characterizing invariant manifolds of the flow through infinitely many
conserved quantities called harmonic moments, and thus a precise quantitative estimate (3) for the
deformation of Ω when µ approaches the Dirac measure ωδ0 will be obtained. We then proceed to
proving that Ω satisfying (1) must be identical with Ω∗ by a contradiction argument, which is based
on the maximum principle applied to the overdetermined problem (2). Indeed, if Ω 6= Ω∗, then the
global-in-time solvability of the deformation flow starting from the nearly circular domain Ω∗ deduces
the existence of a super or subsolution to (2), and this leads to a contradiction.
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