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We consider the Mdbius energy
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defined for a closed curve f : R/LR — R"™. Here L is total length of the
closed curve, s;’s are arc-length parameters, and & is the distance along the
curve. This energy was originally proposed by O’Hara in 1991 for n = 3 as
one of energies of knots. Indeed he introduced the energies
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which are called O’Hara’s energy. The density contains the negative power
of “distance”, which implies that a minimizer, if exists, is the “canonical
configuration” of knots among the given knot type, even though it makes the
analysis hard.

It is easy to see that &,, is scale-invariant if ap = 2, including our
energy £ = & 1. In mid-1990’s, Freedman-He-Wang showed that £ has the
invariance not only under scaling but also under Mobius transformations.
Since then, it has been called the Mobius energy.

In this talk I firstly survey fundamental results on the Mobius energy:
existence of minimizers in the class of prime knots,

Kusner-Sullivan conjecture,

bi-Lipschitz continuity,

regularity of critical points,

gradient flow
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Secondary I will give recent progress of analytic approaches to £. Blatt
[1] found the proper domain of the energy: E(f) < oo if and only if f
is bi-Lipschitz and belongs to the fractional Sobolev space H3/2 N H“>.
Consequently we may assume the existence of the unit tangent vector 7(s) =
f'(s) almost everywhere. By use of the unit tangent vector field along the
curve, the energy may be decomposed into three parts:
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This was recently shown by our research group [2]. The first decomposed
energy & is an analogue of the Gagliardo semi-norm of 7 in the fractional
Sobolev space H'/?. This implies the domain of £ is H3? N HY*, as shown
by Blatt. The integrand .#5 of second one has the determinant structure,
which implies a cancellation of integrand. In [2] the Mdobius invariance of
each & has been also proved.

Since the last part “4” is an absolute constant, we can ignore it when con-
sidering variational problem. This fact shortens the derivation of variational
formulae, and enables us to find their “good” estimates in several functional
spaces [3]. Furthermore we find the L?-gradient of each decomposed energy
which contains the fractional Laplacian (—A,)? as the principal term [4].

Finally I will propose an analytic approach to Kusner-Sullivan conjecture
using gradient flow.
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